MOTOR CIRCUIT ANALYSIS TESTING AT WATERSURE USING ALLTEST PRO 5 ANALYSER.

- TO UNDERSTAND TRUE CONDITION OF PLANT CRITICAL MOTORS.
- TO REPLACE/OVERHAUL MOTORS BEFORE CATASTROPHIC FAILURE OCCURS.
- TO HELP ENSURE MOTOR AND PLANT RELIABILITY INTO THE FUTURE AT WATERSURE.

<u>COMMON CAUSES OF ELECTRIC MOTOR</u> <u>FAILURE</u>

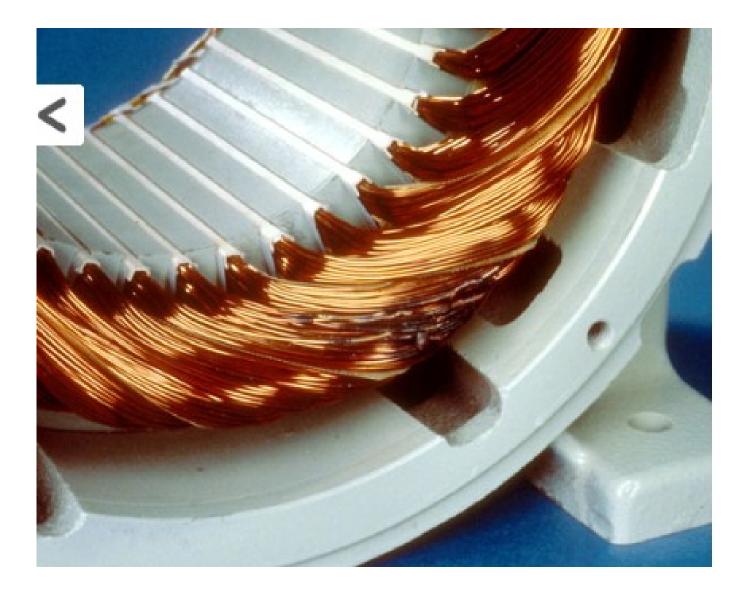
- Low insulation resistance
- Overheating
- Contamination
- Moisture ingress
- High vibration
- Rotor failure
- Over current
- Bearing failure

POSSIBLE CAUSES OF MOTOR FAILURE INTO THE FUTURE AT WATERSURE:

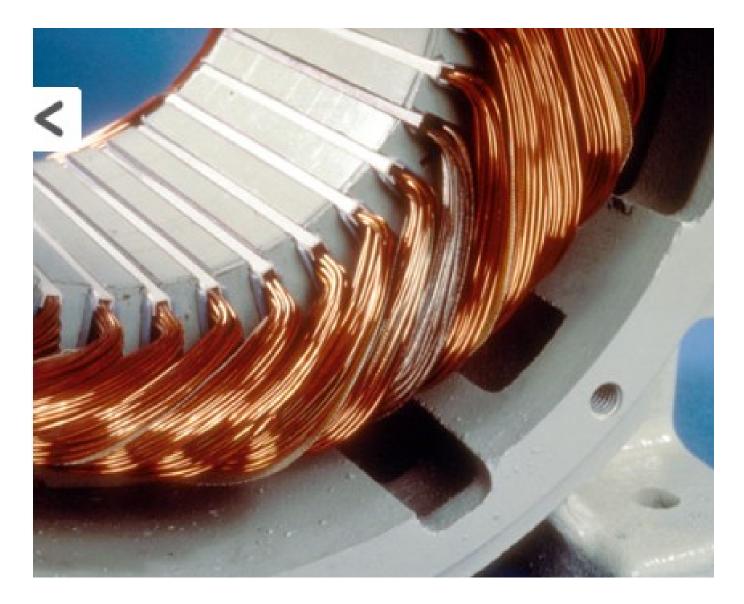
- Motor winding deterioration due to salt air contamination (causing breakdown of winding insulation and eventually causing turn to turn, coil to coil and phase to phase short circuit)
- Loose connections causing overheating of cables.
- Corroded connections due to moisture from water ingress or condensation.
- Collapsed bearing due to lack of lubrication, incorrect installation or high load. This can cause rotor to rub on stator and destroy windings.
- Polyamide cage in cylindrical roller bearings (ABB motors built in India are likely to have polyamide or plastic cages in there roller bearings). Belt driven loads such as centrifuge primary motor and Backwash air blowers are prone to bearing failure if inadequate lubrication (due to high radial load and possibility of polyamide cage especially in 2 pole motors).
- NDE bearing spinning in housing causing looseness. Eventually rotor will rub on stator and short circuit stator (more likely in small motors with aluminum frame).
- Stator eccentricity from soft foot. This causes windings to vibrate at 2 x line frequency and is very bad for winding insulation. The vibration is at 2 X line Hz due to maximum magnetic field strength occurs 2 x per cycle.
- Motor running above full load current of motor on nameplate causing overheating
- Cracked rotor bars/shorting ring could be a failure mode into the future. This is caused by high amount of stop starts overheating rotor bars and eventually causing rotor bars to crack (will only happen if motors are DOL starting and have many stop/start cycles).

MOTOR CIRCUIT ANALSYIS TESTS CAN HIGHLIGHT:

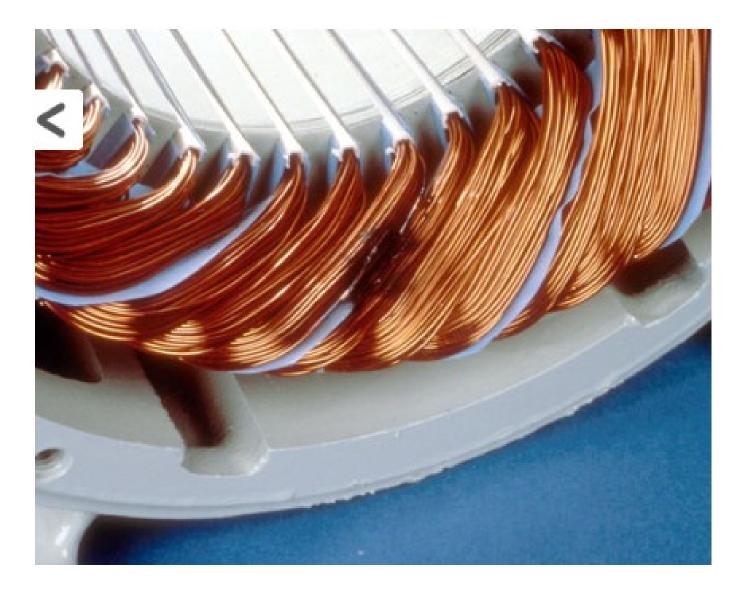
- Turn to turn short inside coil
- Short circuit between coils on same phase
- Short circuit between phases
- Short circuit to earth
- Loose or corroded connections in motor or MCC panel
- Contaminated or overheated windings
- Incorrectly configured terminal strip (if testing at motor)
- Rotor condition/cracked shorting ring or rotor bars (dynamic tests for rotor condition)


MCC TESTS CARRIED OUT AT KONIAMBO POWER

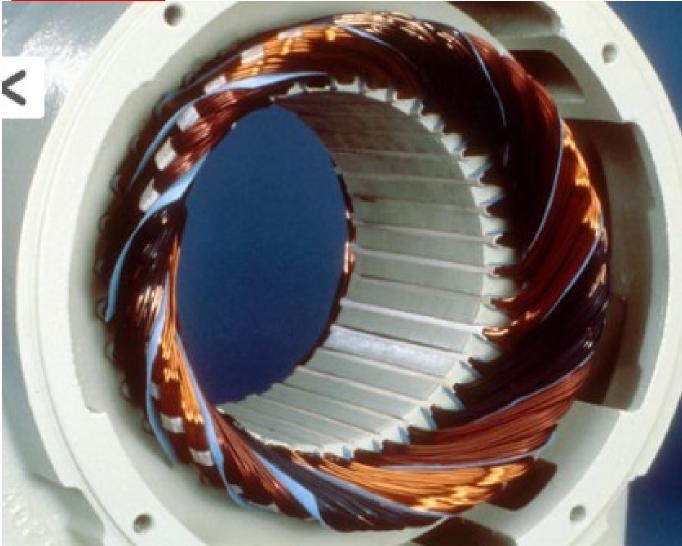
1 Motor circuit and many signation and findings Number of motors tested 295	
	3
3 Terminal corrosion 23	
4 Moisture ingress	
5 Anti condensation heater failure	3
6 Loose motor terminal connections 50)
7 loose connections in MCC 4	1
8 Incorrectly wired (star instead of delta) 6	3
9 Incorrectly configured on terminal bock 69	9
10 Winding short circuit/open circuit 3	3
11 Low insulation to earth 3	3
12 Motor good condition and no issues 160	
13	
14 180][
15 Burnt insulation	
16	
17 160 Terminal corrosion	
18	
19 140	
20 Moisture ingress	
21 120	
22 Anti condensation heate	r failure
23	
24 100 Loose motor terminal co	nnections
25	Ц
26 80 loose connections in MC	с][
27	
28 60 Incorrectly wired (star in	stead of
29 delta)	
30 Incorrectly configured or	n terminal
31 40 bock	
32 Winding short circuit/op	en circuit
33 20	
34	
35 O Low insulation to earth	[
	5
30 1	

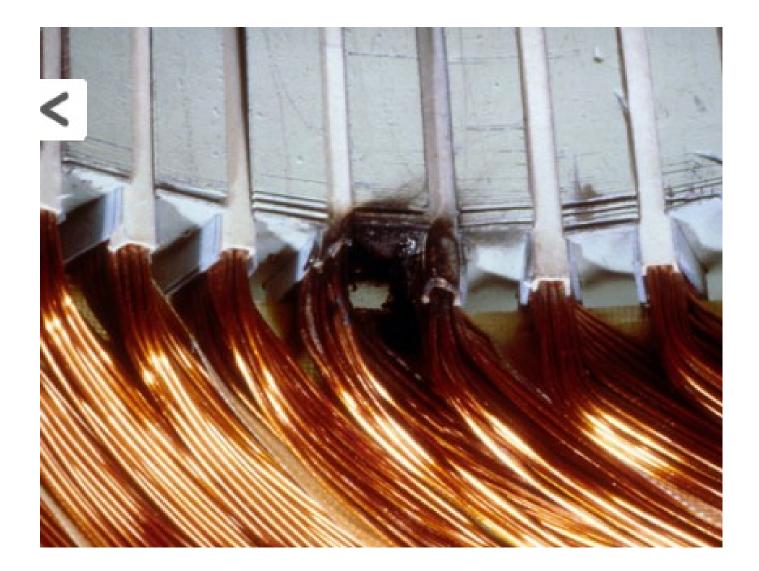

<u>COMPARING MOTOR DIAGNOSTIC</u> <u>TECHNOLIGIES:</u>

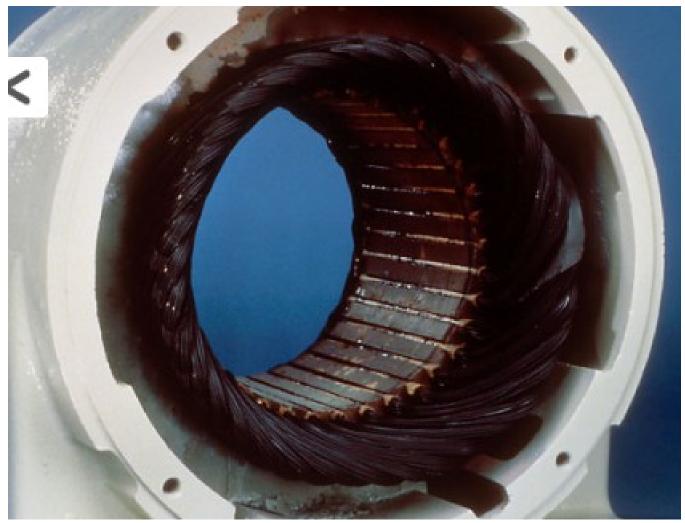
			1						
	Motor diagnost	ic technology	comparison /						
			Connection	Air gap					
	Stator faults	Rotor faults		fauilts	Insulation	Bearing	Vibration	Align	Temp
	Off line testing								
High potential testing					High				
Insulation rsistance tests					High				
Ohm meter testing	Low	Low	Low						
Polarization index testing					High				
Motor maintenance	Low		High		High				
MCA testing	High	High	High	High	High				
	Online testing								
Vibration analysis	Low	High		High		High	High	High	
Infra-red inspection	High	Low	High			High			High
Ultrasonic testing	Low					High			
Motor current analysis	Low	High		High		Low	Low	Low	
MCA, infra-red, vibration and									
ultrasonics	High	High	High	High	High	High	High	High	High

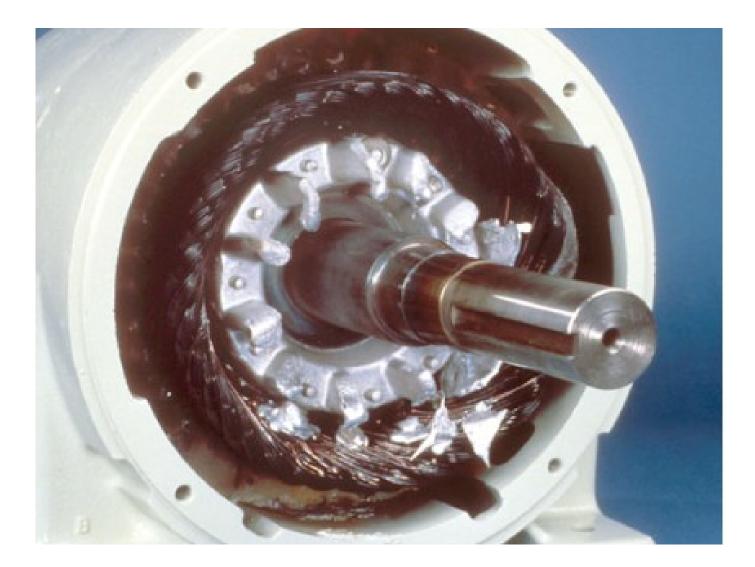

TURN TO TURN WINDING SHORT

COIL TO COIL WINDING SHORT:


PHASE TO PHASE WINDING SHORT:




PHASE DAMAGE DUE TO UNBALANCED VOLTAGE:

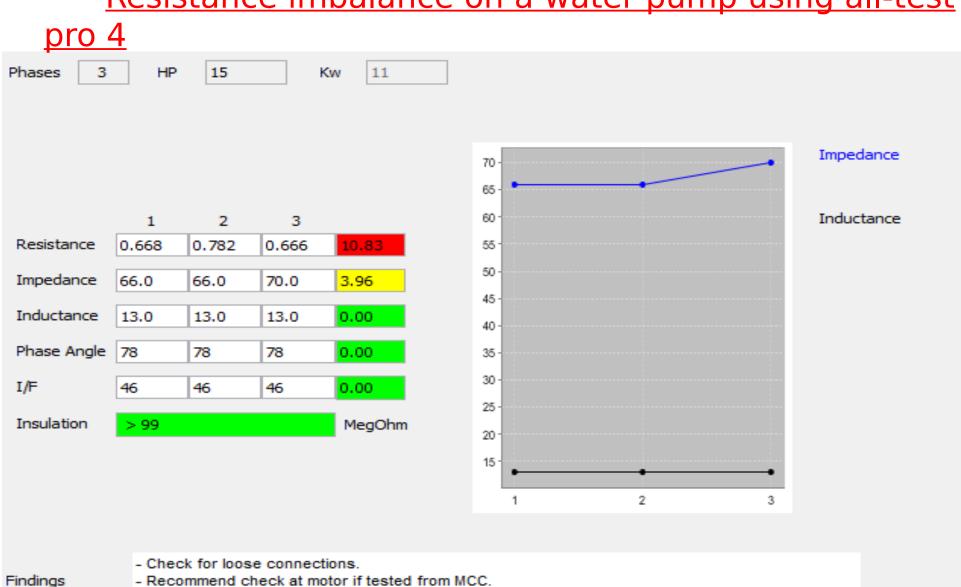

SHORT AT EDGE OF STATOR SLOT:

WINDING DAMAGED DUE TO OVERLOAD:

DAMAGED CAUSED BY LOCK ROTOR:

ALLTEST PRO 5 MOTOR

ALL-TEST PRO 5 TESTS THAT CAN BE CARRIED OUT

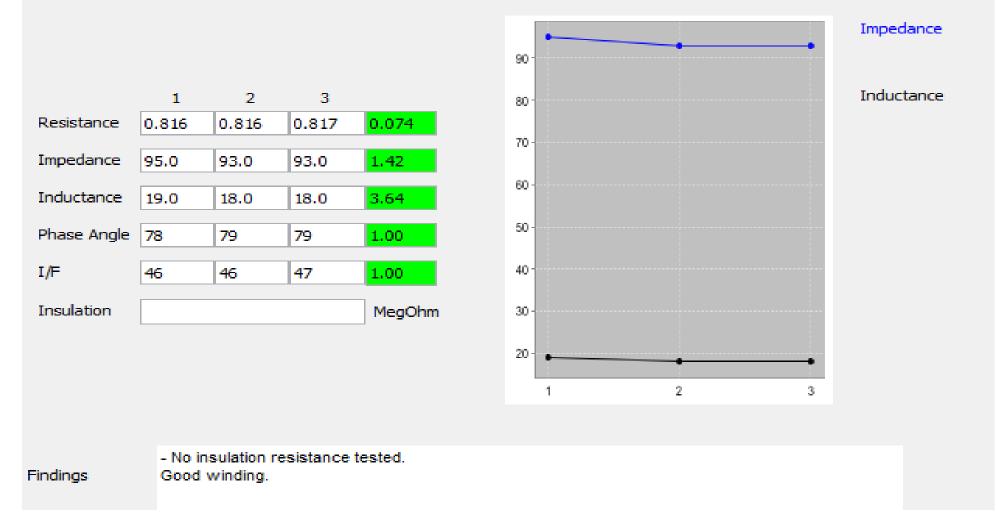

- Resistance
- Impedance
- Inductance
- Contamination (DF)
- Phase angle
- Current/frequency (I/F)
- Test value static (TVS)
- Dynamic test
- Insulation resistance

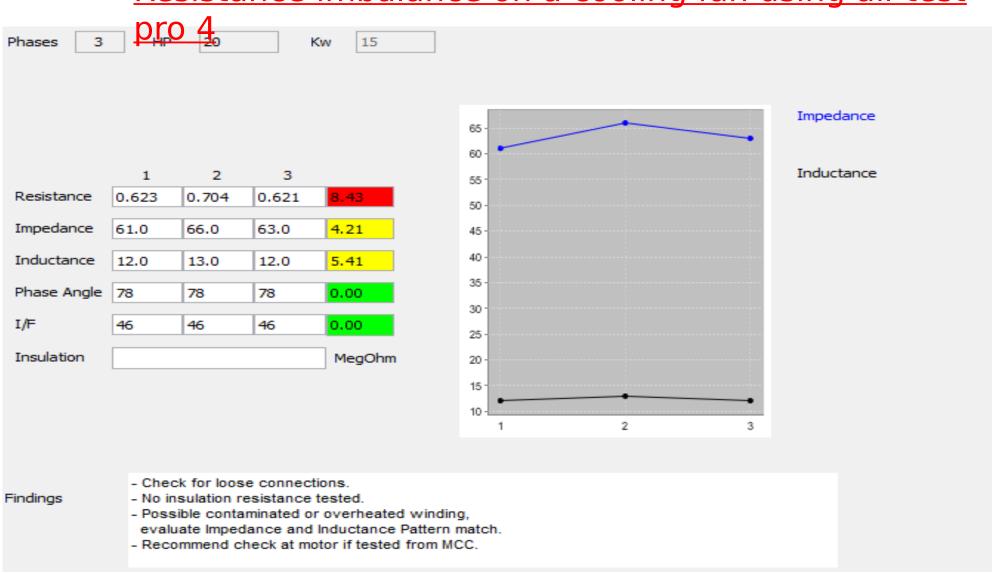
ALL TESTS PR0 5 TESTS AND

TOLERANO	CES Folerance	Detail
Resistance (R)	<5%	Likely loose or faulty connections
Impedance (Z) and Inductance (L)	<5%	If random wound <1000V, unbalance might be due to rotor position or motor design. If form wound then a fault may have occurred.
Dissipation Factor (DF)	>6%	Likely winding contamination or overheated windings
Phase Angle (Fi)	+/- 2 digits (degree) from average	Indicates a winding short: 74, 75, 76 OK; 74, 74, 76 suspect; 73, 73, 76 failed
I/F	+/- 2 digits (%) from average	Indicates a winding short: -44, -45, -46 OK; -44, -46, -46 suspect; -42, -45, -45 failed
TVS	>3%	Likely change in condition of the winding or rotor
Dynamic Test	Stator: >1.5%	Likely stator winding issue
	Rotor: >15%	Likely rotor issue
Insulation Resistance	See INS Guide	Indicates poor insulation to ground (I.e. ground fault)

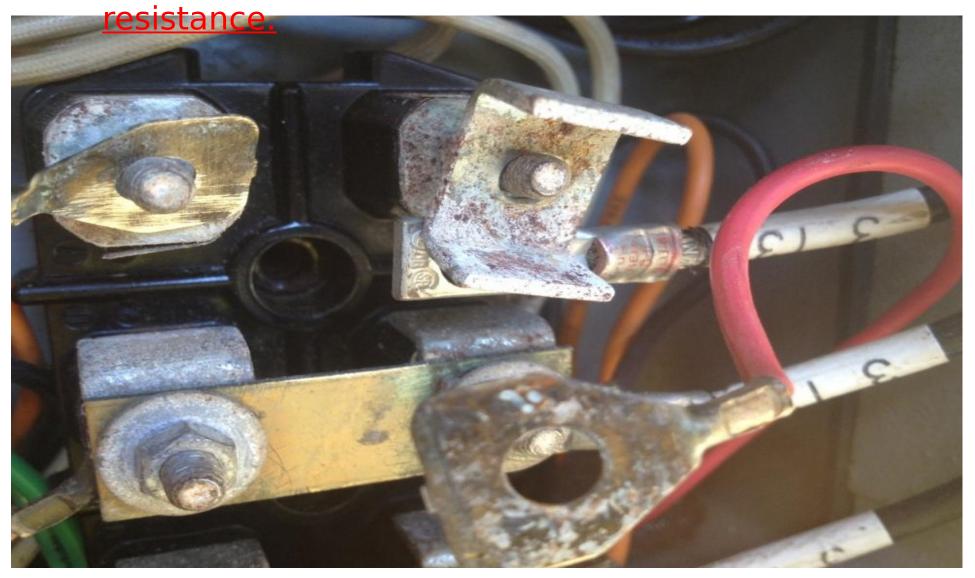
MCA RESISTANCE TEST(MEASURED IN

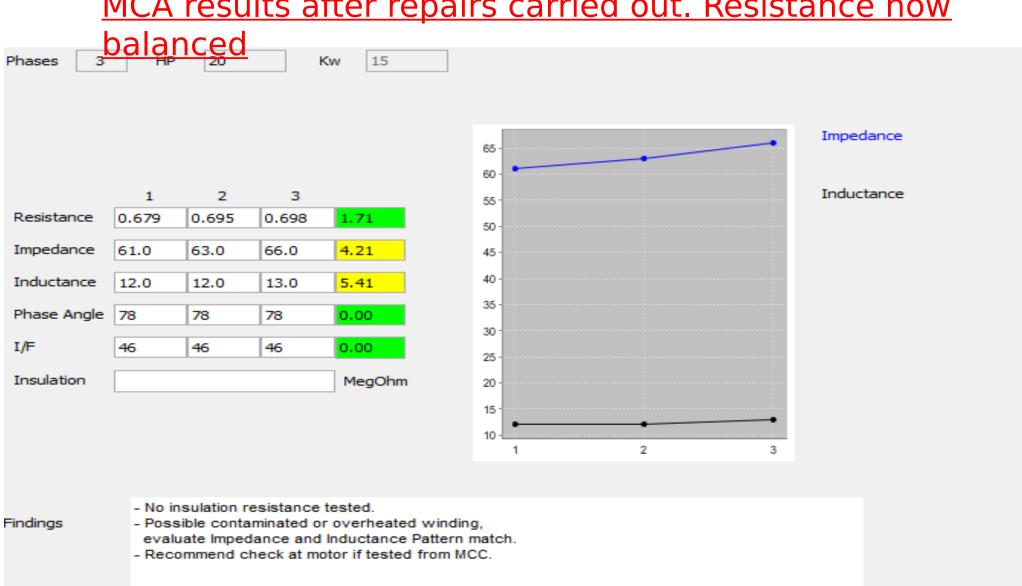
- It is the simple DC resistance of the circuit. If imbalance is found, it could mean loose connection at back of MCC, motor j/box or soldered coil connections inside motor.
- This test is very important due to the formula power (or heat) in watts = current squared x resistance. If you had a 0.1 ohm resistance across a connection in a circuit drawing 100 amps, your heat generated would be 100 x100 x 0.1 = 1000 watts. That is why we have burnt cables get burnt and fires occur in mcc's.
- Values can be effected by induced voltages from live cables nearby. Need to check at motor to confirm.




Resistance imbalance on a water pump using all-test

Loose connection causing overheated supply lead to motor


MCA results after repairs carried out. Resistance now balanced.



Resistance imbalance on a cooling fan using all-test

Corroded connections causing increased

MCA results after repairs carried out. Resistance now

Resistance imbalance on test motor using All

- 🗆 × |

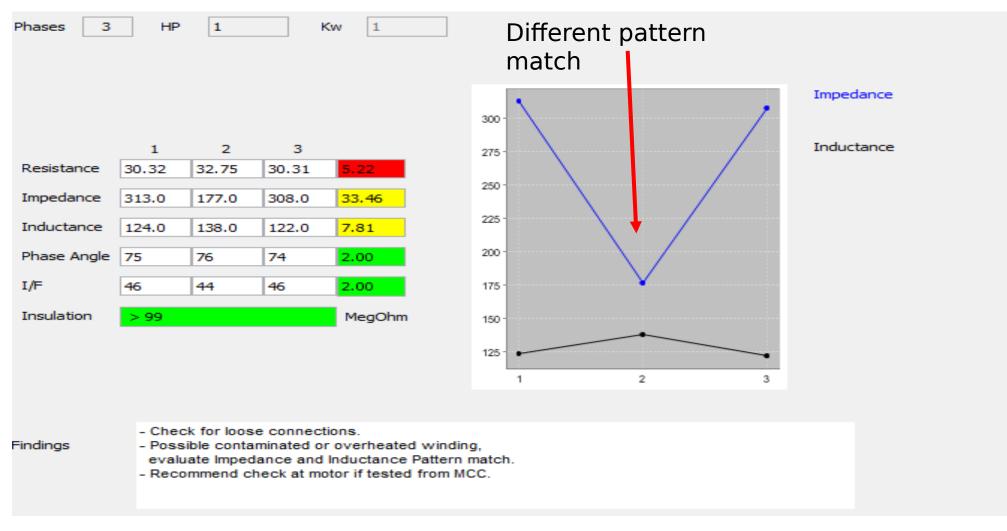
Company	Watersure		Location	Test motor					
EquipmentID	Test positio	on 2	Name	position 2		Туре	3PhaseAC		
20190515-19:30	:20 [B]	[32	21	1	13		Findings
		Resistance (Ω)	BAD	17.6	19.5		19.5	6.61	Check for loose connections.
		Impedance (Ω)		208	240		229	7.68	Recommend check at motor if tested from MCC.
		Inductance (mH)		330	381		362	7.68	Insulation Test Voltage: 500V
		Phase Angle (°)	ок	71.8	71.2		70.5	0.683	
		I/F(%)	ок	-42.2	-41.8		-41.8	0.283	
		Stator Rotor							NOTE
		Insulation (M Ω)	ок	407	MΩ		TVS	677	
		Contamination(%)	ок	3.80%			Ref Value		
		Capacitance (nF)	[38.9	nF				
		Frequency (Hz)		100	R	eference		•	
		Direct Test At Moto	or 🗌					Manual Values	
		32			21		13		
		X			K		Χ	Rote	pr
♣ ♠ \$	×	0% Sdev	/ 0%	0%	Sdev 0%		0% Sdev 0%		

<u>Watersure Sea water lift pump motor resistance</u>

🙆 Individual Analysis – 3Phase

– 🗆 🗙

Company	Watersure		Location	Sea water pumps					
EquipmentID	1041043		Name	Sea watewr lift		Туре	3PhaseAC		
20190417-23:24	4:00 [B]	[32	21	1	13		Findings
20190417-23:26		Resistance (Ω)	WARN	0.0550	0.0514		0.0545	4.19	Check for loose connections.
20190417-23:41	1:43	Impedance (Ω)	[7.35	8.44		8.37	8.71	Recommend check at motor if tested from MCC.
		Inductance (mH)	[2.92	3.36		3.33	8.71	Insulation Test Voltage: 1,000V
		Phase Angle (°)	ок	83.0	81.7		81.9	0.780	
		I/F(%)	ок	-45.9	-44.9		-45.0	0.646	
		Stator Rotor							NOTE
		Insulation (M Ω)	ок	>999	MΩ		TVS	6.90	
		Contamination(%)	ок	1.86%			Ref Value		
		Capacitance (nF)		128	nF				
		Frequency (Hz)		400	R	eference		•	
		Direct Test At Mot	or 🗌					Manual Values	
	32		21			13	SAVE N		
		X			K		Χ	Rote	or IIII
	×	0% Sdev 0%		0%	0% Sdev 0%		0% Sdev 09	%	


<u>Watersure sea water lift pump motor corroded</u> <u>lugs</u>

MCA IMPEDANCE TEST (MEASURED IN OHMS):

- Impedance is the total AC and DC resistance in the winding.
- Any imbalances in inductance normally indicate position of rotor (if impedance and inductance follow the same pattern match) and is not cause for concern.
- If the impedance imbalance does not match the inductance, it can indicate overheated or contaminated windings. Recommend checking at motor J/box. Normally can smell overheated windings inside j/box.
- If the impedance result reads zero, then that is a good indication of a shorted winding

Indication of contaminated or overheated windings using All-test pro 4

INDUCTANCE (MEASURE IN HENRIES)

- Inductance measurement is the indicator of the magnetic strength of windings.
- If the inductance imbalance is high, but impedance values are normal, it can indicate shorted winding.
- Will show big imbalance if windings are shorted.
- If pattern match is the same as impedance, then it is the position of the rotor causing this and is not a problem.

Impedance and inductance above warning values of 5%.

🕌 Individual Analysis – 3Phase

- 🗆 x |

Company	Watersure		Location	Backwash pump					
EquipmentID		01A	Name	G1 DMPF BW Pmp A		Туре	3PhaseAC		
20190502-20:28				32	2	1	13		Findings
20190502-20:35	5:16	Resistance (Ω)	ок	0.0218	0.0215		0.0217	0.642	Recommend check at motor if
		Impedance (Ω)		5.78	5.65		7.14	15.4	tested from MCC. Insulation Test Voltage: 500V
		Inductance (mH)		2.30	2.25		2.84	15.4	
		Phase Angle (°)	ок	82.6	82.6		81.5	0.762	
		I/F(%)	ок	-44.5	-44.8		-44.1	0.396	
			cates t : iS ^e cau ок	here is no fa	ult and i allance.		atch and sam e position of th TVS Ref Value	5.16	NOTE Tests indicate good winding condition.
		32 X 0% Sde	ev 0%	0%	21		13 X 0% Sdev 09	F	E NOTE REND

PHASE ANGLE (MEASURED IN DEGREES):

- Phase angle_is the relationship between the AC current to the applied voltage from MCA unit.
- The results are expressed in degrees angular (0 to 90) and is the difference between the current and the voltage.
- In an inductive circuit (as per induction motor) voltage leads current by 90 degrees in the sinewave.
- If the voltage leads the current the phase angle is positive.
- If the voltage lags the current, then the phase angle is negative.
- Imbalance in phase angle of more than 2 or 3 digits, can indicate coil to coil short.

Stream 2 CIP pump A phase angle

🕌 Individual Analysis – 3Phase

– 🗆 X

Company	Watersure		Location	RO cleaning feed				
EquipmentID	189G2MO	003A	Name	G2 CIP Pmp A	Туре	3PhaseAC		
EquipmentID 189G2MO 20190430-20:09:00 20190430-20:12:12 [B] 20190430-20:14:39 20190509-01:53:25 20190509-01:53:25 20190509-02:07:41 20190509-02:09:45 20190509-02:12:08		Resistance (Ω) OK Impedance (Ω) Inductance (mH) Phase Angle (°) BAD		32 0.00679 4.62 1.84 80.6 -43.6	21 0.00686 5.15 2.05 77.4 -41.5	13 0.00674 5.83 2.32 76.2 -40.4	0.895 12.1 12.1 2.49	Shorted Stator Winding. Repeat the test to confirm. Contaminated or Overheated Recommend performing rotor compensated winding test. See manual for details. Recommend check at motor if tested from MCC. Insulation Test Voltage: 1,000V
		I / F (%) Stator Rotor Insulation (MΩ) Contamination(%) Capacitance (nF) Frequency (Hz) Direct Test At Mot	OK BAD	640 16.2% 58.5 400	MΩ nF Reference	TVS Ref Value	4.50	NOTE Carried out same test 3 X with exactly the same result. Cannot carry out rotor compensated test with alltest pro5 (need alltest pro33 to do this) Carried out dynamic test which also revealed stator and possible rotor issues. Have carried out further dynamic tests on stream 1 A (good motor) which indicate
	*	32 X 0% Sdev		0%	21 Sdev 0%	13 X 0% Sdev 0	SAVE N TREE Rote	

I/F (CURRENT/FREQUENCY) MEASURED IN PERCENTAGE:

- Low voltage AC signal is injected into windings at a specific frequency and current is measured. The Hz is then doubled and current is measured.
- The I/F reading is ratio of the current at doubled frequency, compared to original frequency.
- An imbalance of more than 2 digits indicates possibility of phase to phase short. If the motor trips on startup then it is usually a phase to phase short or short to earth fault.
- A motor can have a good insulation resistance to earth (as per typical electricians test with megger), but still trip due to internal phase to phase fault.
- Phase to phase fault have potential to draw large currents and should trip motor out on overcurrent.

Test motor I/F (and phase anle)

<u>imbalance</u>

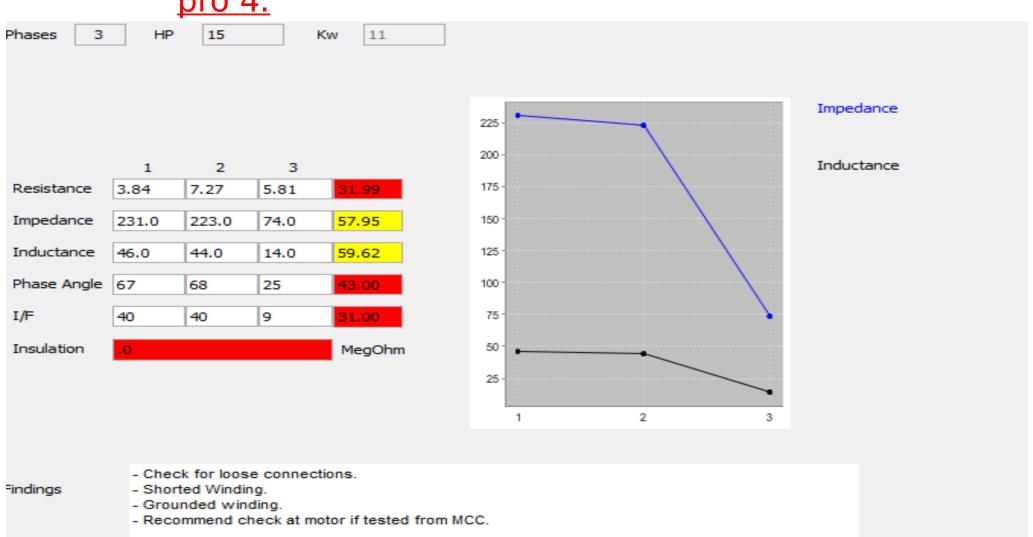
🙆 Individual Analysis – 3Phase

– 🗆 🗙

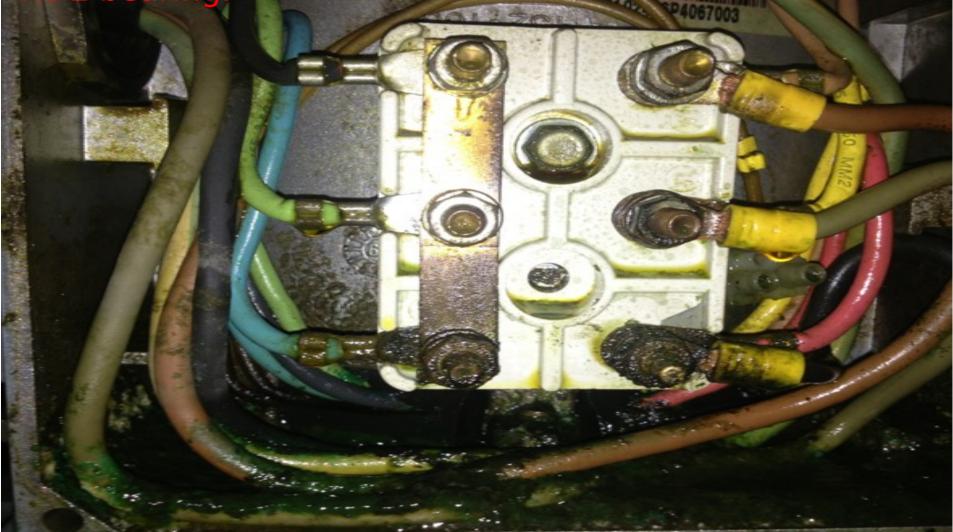
Company	Watersure	Location		Test motor	Test motor				
EquipmentID	test positio	n 4	Name	position 4		Туре	3PhaseAC		
20190515-19:35	5:16 [B]	[32	2	1	13		Findings
20190515-19:37	7:20	Resistance (Ω)	ок	17.6	17.7		17.7	0.237	Shorted Stator Winding. Repeat the test to confirm.
		Impedance (Ω)	:	218	290		244	15.7	Recommend performing rotor compensated winding test.
		Inductance (mH)	:	346	461		387	15.8	See manual for details. Recommend check at motor if
		Phase Angle (°)	BAD	69.6	62.0		67.7	4.46	tested from MCC. Insulation Test Voltage: 500V
		l / F (%)	BAD -	42.4	-47.5		-42.0	3.53	Ļ
		Stator							NOTE
		Rotor							NOTE
		Insulation (MΩ)	ок	364	MΩ		TVS	752	
		Contamination(%)	ок	3.54%			Ref Value		
		Capacitance (nF)	-	19.9	nF				
		Frequency (Hz)	-	100	R	eference	•	•	
		Direct Test At Mot	tor 🗌					Manual Values	
		32			21		13	SAVE	
			-		_			TRE	ND
								Rot	or
↓ ↑ \$	×	0% Sde	V 0%	0%	Sdev 0%		0% Sdev 0	%	

INSULATION RESISTANCE TEST TO EARTH (MEASURED IN MEGOHMS).

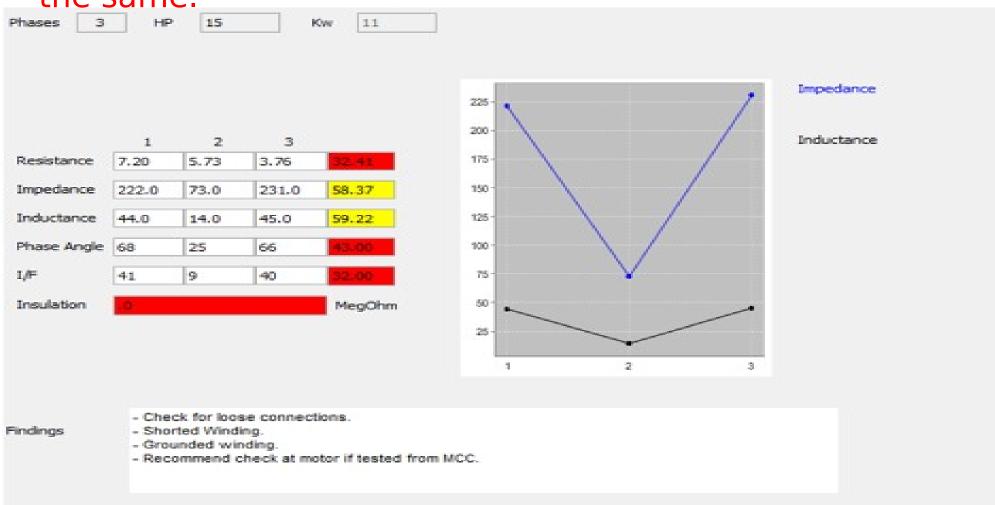
- Measurement should be greater than 99 meg ohm.
- If reading below 30 Meg, indication of moisture ingress.
- If readings are below 1 meg ohm, may need to replace motor. Will need to carry out investigation at motor to check for moisture ingress and winding condition).
- If readings are close to zero, then indicates short to frame of motor (could be short across terminals in motor j/box so recommend checking at j/box).
- If earth loop impedance is too high (resistance of earth cable back to MCC), then a motor can become live if short to frame and high earth cable resistance. This is a safety hazard due to the possibility of electric shock.


Test motor low insulation resistance and high contamination

🕌 Individual Analysis – 3Phase


– 🗆 🗙

Company	Watersure		Location	Test motor					
EquipmentID	test positio	n 3	Name	position 3		Туре	3PhaseAC		
20190515-19:32	2:57 [B]			32	21	I	13		Findings
		Resistance (Ω)	ок	17.7	17.7		17.7	0.170	Degraded Insulation Contaminated or Overheated
		Impedance (Ω)		207	239		228	7.79	Recommend check at motor if
		Inductance (mH)		329	380		362	7.84	tested from MCC. Insulation Test Voltage: 500V
		Phase Angle (°)	ок	71.9	70.8		70.7	0.727	insulation rest voltage, 500v
		I/F(%)	ок	-42.2	-41.8		-41.9	0.236	
		Stator Rotor							NOTE
		Insulation (MΩ)	WARN	8.14	MΩ		TVS	675	
		Contamination(%)	BAD	14.4%]		Ref Value		
		Capacitance (nF)		36.8	nF				
		Frequency (Hz)		100	R	eference	•	•	
		Direct Test At Mot	or 🗌					Manual Values	
		32			21		13	SAVE	
			_		_			TRE	
		X			X		X	Rot	tor
↓ ★ \$	×	0% Sdev	v 0%	0%	Sdev 0%		0% Sdev 09	Ya	


<u>Hydraulic pump motor earth fault with all-test</u> pro 4.

Motor junction box full of watered down grease from NDE bearing.

After cleaning out reconnecting motor j/box readings still the same.

After removing rotor, discovered shorted winding to frame

CONTAMINATION (DISSIPATION FACTOR)

- Dissipation factor is used to indicate the capacitive property of the insulation materials used in the motor windings.
- When the insulation degrades over time, it becomes less resistive due to contamination or overheating and the DF will increase. Any value above 6 degrees indicates contamination or overheating.
- Along with the dissipation factor, capacitance is also measured which can help trend the insulation properties.
- As DF and capacitance are directly related to each other, when one of the tests returns an invalid result (e.g. out of range), then it means the other test results are not valid either.
- Measuring DF at too high or too low temps can introduce errors, and the IEEE recommends performing the tests close to 20 degree Celsius.
- DF testing is widely used on other electrical equipment such as power transformers, circuit breakers, generators and cables.

Example of low insulation resistance and high dissipation factor

Low insulation resistance combined high dissipation factor is a strong

Company	Watersure		Location	Test motor		· 9 · · · • • • • • • • • •		
EquipmentID	test positio	n 3	Name	position 3	Ту	pe 3PhaseAC		
20190515-19:32	2:57 [B]	[32	21	13		Findings
		Resistance (Ω)	ок	17.7	17.7	17.7	0.170	Degraded Insulation Contaminated or Overheated
		Impedance (Ω)		207	239	228	7.79	Recommend check at motor if
		Inductance (mH)		329	380	362	7.84	tested from MCC. Insulation Test Voltage: 500V
		Phase Angle (°)	ок	71.9	70.8	70.7	0.727	
		I/F(%)	ок	-42.2	-41.8	-41.9	0.236	
		Stator Rotor						NOTE
		Insulation (MΩ)	WARN	8.14	MΩ	TVS	675	
		Contamination(%)	BAD	14.4%		Ref Value		
		Capacitance (nF)		36.8	nF			
		Frequency (Hz)		100	Refere	nce	•	
		Direct Test At Mot	tor 🔲				Manual Values	
		32	•		21	13	SAVE N TRE	ND
-	×	0% Sde	v 0%	0%	Sdev 0%	0% Sdev 0	%	

CAPACITANCE, TVS AND RVS

CAPACITANCE:

The insulation between the winding conductors and the machines frame form a natural capacitor. Capacitance is a measure of a systems ability to store electrical charges. When the insulation system becomes coated in grease, oil, dust, or any other foreign matter, it will cause changes in capacitance. Closely linked to dissipation factor.

TEST VALUE STATIC (TVS):

This value is calculated from measurements made at several different frequencies through the motor stator windings. Any change in the winding insulation systems condition will be reflected in the TVS.

REFERENCE VALUE STATIC (RVS):

When a test record is saved as reference type in the instrument, the TVS is called the RVS. Each RVS is a baseline reading so other measured TVS can be trended over time for comparison for a specific machine.

DYNAMIC TESTING TO HIGHLIGHT STATOR AND ROTOR FAULTS.

- The dynamic tests measures in real time during manual rotation, a number of parameters in all three phases which together form the "test signature" for the rotor and stator.
- The test signature is then automatically analysed in the AT5 and give the user immediate results for Stator and Rotor issues.
- The 6 dotted lines each with 8 data points represent the rotor signature.
- The green lines are the stator signature.
- If the dotted lines do not have any significant variations, and the green lines are in a straight line, then there is good indication that the rotor and stator are both in good condition.

Dynamic tests can confirm stator issues and highlight rotor issues.

CAT.NO.ASW12

With a dynamic test, the rotor is manually rotated and a signature of both the rotor and stator are provided to highlight any faults with either rotor or stator

Dynamic test indicating both rotor and stator

icc		32	21	13					
Resistance	6				NA				
Impedance	(Ohm)				NA				
Inductance	(mH)				NA				
Phase Angl	e (°)				NA				
/F (%)					NA				
Stator		BAD							
Rotor		WARN							
Insulation (I	MOhm)	NA				TVS			
						Ref Value			
Contaminat	ion(%)	NA				Frequency			
Capacitance	e (nF)	NA							
Findings:		sue found. Repeat the sue. Repeat the test to		it.					
	Recommend check at motor if tested from MCC.								
Notes:	Caried out same test multiple times with same results.								

Stator Signature: Solid green line Rotor Signature: Curves connecting dots %: Change in Impedance during rotation Sdev (%): Deviation of the stator signature 46.0% Sdev 3.5% 43.3% Sdev 2.4% 48.2% Sdev -5.9%

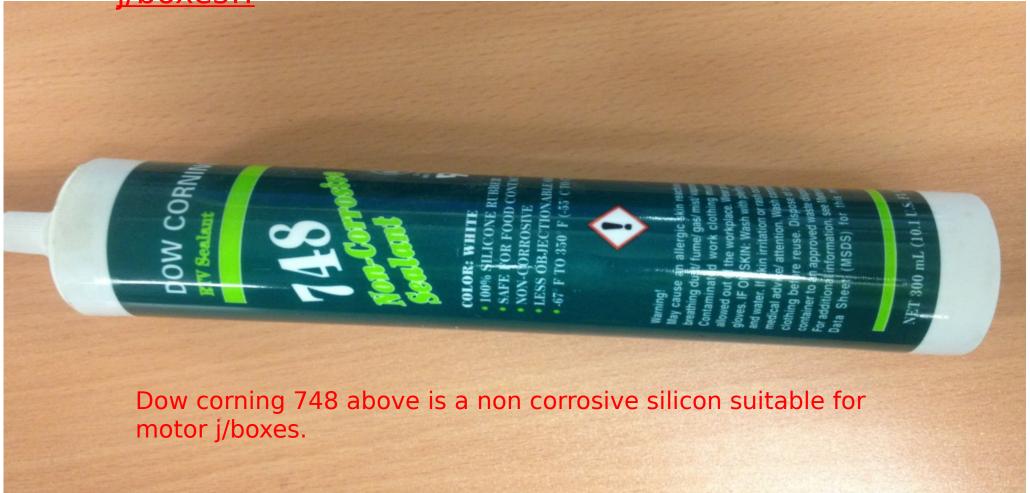
Green lines do not line up indicating stator issue. Winding 13 dotted line crosses over stator line indicating rotor issues also.

Dynamic tests indicating both rotor and stator are

<u>qooc</u>	<u>l.</u>		32	21	13	
Resistance (Ohm)				NA	
Impedance (-				NA	
Inductance (NA	
Phase Angle	· (°)				NA	
I/F (%)					NA	
Stator		OK				
Rotor		OK				
Insulation (M	lOhm)	NA				TVS
						Ref Value
Contaminatio	on(%)	NA				Frequency
Capacitance	(nF)	NA				
Findings:	Good Stator Win Good rotor	ding				
	Recommend che	ck at motor if test	ted from MC	C.		
Notes:						
			32		21	13
			52		21	10
		\sim	$\sim\sim\sim$	<u> </u>	$\sim \sim \sim$	$\sim\sim\sim\sim\sim$
Stator Signature: So	olid green line					
otor Signature: Curves connecting dots			• • • • •			• • • • • • • •

Sdev (%): Deviation of the stator signature 47.5% Sdev 0.2% 47.6% Sdev 0.3%

Green lines and dotted lines balanced indicating good stator and rotor.


46.5%

Sdev -0.5%

IMPORTANT THINGS TO BE AWARE OF WHEN USING ALL

- If motors moving due to fan or pump being driven by air flow from wind, or bypassing valve causing pump to rotate backwards, then a voltage will be induced into windings. This will give incorrect readings. Any motor that has an indication of fault, ensure that it is not rotating.
- If tests carried out at MCC indicate a fault, repeat test at least 2 more times to check for repeatability. If imbalance still exists then retest at motor j/box.
- If motor still indicates winding short when tested at j/box do test 2 more times to check for repeatability. Then if possible, you will need to do dynamic test to confirm stator issues and any rotor issues.
- If resistance imbalance is significant, then all the other tests will be unreliable. Need to address the resistance issue before condemning the motor.
- Never condemn a motor without carrying out the steps above!
- <u>Always disconnect outgoing cables from VSD</u> drives to protect electronics inside VSD (if doing test from panel) or disconnect at motor j/box if doing test at motor.

Ensure only non acetic silicon is utilized on motor i/boxes!!

Typical silicon contains acetic acid and is very corrosive to motor connections!!